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Generalizations of
Taylor Relaxation

This presentation

® Shows there is a reduced magneto-hydro-
dynamics that leads to Taylor’s relaxed equilibrium
states in the static limit by using Hamilton’s

Principle to derive self-consistent dynamics from
a relaxed MHD (RxMHD) Lagrangian.

® Calculates the modulated current sheet driven
by a resonant perturbation at a rational surface
by treating the plasma as two relaxation regions

— 2-region example of multi-relaxed MHD
(MRxMHD)




Hamilton’s Action Principle
in domain (Q: 65=0

S = / dt / Ld’xz denotes the action. lts first variation is:
Q

5S:/dt/5£d3x+e/dt/ L& -ndS
Q 0f2

oL is O(e) Eulerian variation of action density L,

e is Lagrangian displacement of fluid element positions r
on boundary 0Q

MHD Lagrangian density is
pPV+V p B-B

L — — ——
MHD 5 1 2

where v = dr/dt is velocity, p 1s mass density, p is

pressure and B is magnetic field




Constraints: Holonomic

e IMHD = Ideal MHD (p, B and p holonomically constrained,

i.e. locally “frozen in” to fluid elements):
op = —€eV-(p€), o0p = —€(&-Vp+ypV-£), 0B = VXIA
SA = e€XB + V6
e RxMHD = Relaxed MHD (only p holonomically

constrained — no effect on static equilibrium —
magnetic helicity and entropy constrained only globally):

0p = —€V-+(pg)
® MRxMHD = Multi-Relaxed MHD (multiple RxMHD
regions (); separated by current sheet transport barriers 0Q);,
with holonomic constraints on either side, , of 0Q); to keep B

tangential to the current sheets):
op = —€eV-(p€) in Q;, §A g = (e€XB 4 V) )igs on 0QF




Constraints: Global

® |IMHD = Ideal MHD (none — mass, entropy and magnetic
flux and helicity within Q all automatically conserved as a

consequence of the holonomic constraints):

® RxMHD = Relaxed MHD (mass and flux automatic,

entropy and magnetic helicity are constrained globally within
() using Lagrange multipliers 7 and u respectively):

pIn(Cp/p?)  A-B

L= Lyup +7 + 1
v —1 210

where y and C are thermodynamic gas constants.

® MRxMHD = Multi-Relaxed MHD (mass and flux
automatic, entropy and magnetic helicity are constrained
globally within the multiple RxMHD regions €); using

Lagrange multipliers z; and y; giving p and g profile control).




MRxMHD equations

d
® Continuity: d—i = —pV.v

® Require Hamilton’s Principle: 65 =0 for all

independent variations of r, p and A, where:

5S:Z/dt/ 5£id3x—|—62/dt/ L; &-ndS

® Resulting Euler—Lagrange equations are:
dv

P =
p=T;p  (isothermal equations of state in each region)

—Vp  (momentum equation)

VxB = uB (Beltrami equations)

|[p - %ﬂz = 0 (pressure jump conditions at interfaces)




Hahm-Kulsrud Rippled Slab Model

® Simple slab model for
resonant current sheet
formation near x =0 in
response to symmetrical
periodic perturbation at

boundaries x = *+a

® Hahm & Kulsrud, Phys. Fluids
1985, found 2 solutions:

® shielding current sheet on x = 0 (shown in red)
Y = abB; [% + MI sinh(kx)| cos(ky)}

® island with no current sheet
Y =aBy [296;2 4+ cos&ka) cosh(kx) cos(ky)]

where BY is |unperturbed poloidal field| at boundaries and o < 1

7




2-region MRxMHD HKT model

HK-style model is natural application of MRxMHD because:

® linearity of Beltrami equation leads to easily solvable,
linear GS equation (Poisson in small-y limit.)

® Symmetry about, and straightness of, current sheet at x
= 0: gives most geometrically simple 2-region geometry

Relaxation scenario:

® Switch-on: ripple on upper and lower boundaries slowly
increased from zero (plane slab) to final amplitude

® A shielding current sheet at x = 0 resonance develops

® Kruskal-Kulsrud damping: evolution through equilibria

® Connect equilibrium sequence by helicity conservation




Grad-Shafranov-Beltrami equations

Grad-Shafranov equation for force-free field in slab geometry:
B=VzxVy+ F)Vz V) + FF' =0
V x B = uB (Beltrami equation) is satisfied by requiring:

V2 = uF with F(¢)=C — ), giving (V4 p?)y = C

S

General Solution: ¢ = @ + B£O¢o($\u) + Y(z,y)

— . By
where 1) is cross-sectional average of 1, ¥o(z|p) = 7(1 — COS [T

is plane slab solution, F is the cross-sectional average of B,
and v obeys a homogeneous Beltrami equation: (V? + )y = 0

with boundary conditions such that v is constant on boundary
and on cuts.




Extension of HK shielding solution

Helicity conservation requires three extensions of HK solution

Instead of the HK harmonic component y/1 we use ansatz

o 2 a .
Yz, y) = _aw (|smhk1x|cosky

ki, . -
+ ys—|sin ux| | — 1 cos px
where: (

. ¢ is a solution of the Beltrami equation (V> + 1)y = 0
It is only harmonic in the small-y limit. Likewise

k(p) = (K2 — 1®)Y? - k only as u — 0
2. The term in ys was introduced in Dewar et al. 2013 to
allow control of the total current in the sheet

3. The term in 7 is required for poloidal flux conservation
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Slab-Toroidal analogies

poloidal toroidal rotational
periodicity periodicity transform
ength: length: (helical frame):

Lyol = 2ma, Lioy = 2maR, ¢ = — tan pox
a

B.=F 1 -1

t=q _qm,n
E.g. requiring A o Of
3t 0.5}
t =1 2¢ ' ' ' - x/a
1¢ -1.0 -0, 05 1.0
on boundary - R
. -1.0 -0.5 05 1.0 -1.0t
and setting o ¥
30 ¢ d 15
oa = 1/5 © 0 (@)
. 10 10¢
8IVES R/a ~5: 10 -5 05 10" °
-20¢ : : : - Xx/a
-30¢ -1.0 -0.5 05 1.0
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i 1S not const. wrt. t

® |n plane slab, before ripple is turned on, the

unperturbed equilibrium flux function is
By

Yo(x|po) = — (1 — cos piox)
Ho

e As amplitude parameter « is increased from O,
U must change to preserve helicity and fluxes:

Iug - 1)/a?
(HlJo6 ) a =000
5,
eg.m=2case: 4 a =0.07
; a = 0.05
' oy — @ =003

020406081.01.214
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Current sheet has a
nonlinear d.c. component

® HK implicitly assumed the total current in the sheet was
zero, but MRxMHD switch-on shows there is a nonzero

total current j — 20%af1A ~g Proportional to a*:
sinh k1a

e.g.m = 2 case:

ys/a o
05. - a = 0.09

05 0.2 040608401214 0 a =007

ol

-1.5 a = 0.05
— a =0.03

-2.5|
-3.0"

-2.0}
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Sheet current: linear
ripple + nonlinear d.c.

e.g.m = 4 case: [0.0]
0.104

0.08} — a =0.09
0061 — @ =0.06
04}
\ — a = 0.03
0.02 \

05 05
Jump in gradient of Y, vs.y for apo = 0.2 and selected values of
X, showing current density in both + & — directions wrt. z for

Y

the smallest & but only in one direction for larger a, as O(a?)

component begins to dominate.




Current reversal causes “half-islands”

« =0.03

Fully shielded case: Level surfaces of ¢ (magnetic surfaces) in the case aup =0.2, m =4,
showing the occurrence of a small half-island, bisected by the reversed-current section of
the current sheet, for boundary ripple amplitude a = 0.03, but not for the greater amplitude a

= 0.06, for which there is no current reversal.

x = 0.06

No current reversal —
no half-islands
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Fluxes and rotational transform |

¥ .
0 Small o: D
3.x107% x =00l 0.006 -
25x107% y _——
0.004
2.x1076 | (Dashed curves are 0002
N x 1076 | for plane slab, o = 0) '
1.20® 4 2 ;e 10
e T m =4 case: 0o
‘ ‘ ‘ -=— 10°x, -0.004]
42 2 4 — ~0.006'

Above: Poloidal flux as a function
of xo (= x along y-axis), showing
discontinuity in slope at x = 0
caused by current sheet

Above: Toroidal flux as a function of x
along y-axis, showing jump at x = 0
caused by half-island.

8.882 / Left: Rotational transform

0.001 p ,
‘ ‘ ‘ ‘ 109 x, N (370)/(1) (370)
-4 %001 2 4 , .
_0.002/ showing smooth quasi-
=07003 | jump across xo = 0.
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Fluxes and rotational transform I

v ¥, Larger &: Do
0.00002 | o = 0.04 0.0015
0.0010 |
0.000015 (Dashed curves are 0.0005 /
for plane slab, & = 0) | N ‘ | 5
.00001 | P 5 PR
" m = 4 case: _04005
5. x ~0.0010 |
| 1095 ~0.0015 |
4 -2 2
Toroidal flux jump has gone as there
are no half-islands above a threshold
between & = 0.03 and 0.04
t
0.015/_______
0.010
0.005 05 There is now a definite
‘ ‘ X0 . . .
-4 -2 4 jump in rotational
transform

/O.w
-0.015!
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Conclusions

Multi-region generalization of Taylor relaxation has been
extended to a self-consistent dynamics through Hamilton!
Principle of Stationary Action.

A rippled slab model has been used to illustrate the
formation of a resonant current sheet as boundary ripple
is switched on

For small ripple amplitudes, current reversal occurs in the
current sheet — unperturbed sheared magnetic field
exhibits topological change, with small half-islands, locking
rotational transform to resonant value

For larger ripple amplitude rotational transform can jump
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